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Abstract-TEM images are rapidly gaining prominence in 
various sectors like life sciences, pathology, medical science, 
semiconductors, forensics, etc. Hence, there is a critical need 
to know the effect of existing image restoration and 
enhancement techniques available for TEM images. This 
paper primarily focuses on DVROFT filter. After simulation 
it is observed that the SNR and PSNR ratios obtained for 
TEM image is much higher than those obtained for normal 
image. DVROFT give better performance than the others in 
case of both greyscale TEM and colored TEM images. 
 
Index Terms: TEM, Filter, SNR, PSNR 
 

I. INTRODUCTION 
A lot of work has been undertaken in the restoration and 
enhancement of ultrasound, MRI and other TEM images of 
different formats but the same efforts are yet to be made 
extensively for the transmission electron microscope 
(TEM) images.  TEM images are rapidly gaining 
prominence in various sectors like life sciences, pathology, 
medical science, semiconductors, forensics, etc. Hence, 
there is a critical need to know the effect of existing image 
restoration and enhancement techniques on TEM images. 
There are multiple available techniques for improving the 
image quality.  

 
II. LITERATURE SURVEY 

The total variation has been introduced in Computer Vision 
first by Rudin, Osher and Fatemi [1], as a regularizing 
criterion for solving inverse problems. It has proved to be 
quite efficient for regularizing images without smoothing 
the boundaries of the objects. Antontonin proposed a 
relaxation method , an alternative method that was able to 
handle the minimization of the minimum of several convex 
functionals [2]. In 1995, an improvement to the choice of 
the regularization parameter involved in a deconvolution 
procedure was proposed. It was based on a statistical model 
allowing a good estimation of the spectral signal-to-noise 
ratio [3].Based on the CGM model, Chambolle (C) in [4] 
developed an efficient dual approach to minimize the scalar 
ROF model. C’s algorithm is faster than CGM even if the 
convergence of C’s scheme is linear and the CGM’s 
scheme is quadratic. C’s algorithm is faster because the 
cost per iteration to use CGM is higher (CGM needs to 
solve a linear system at each iteration).  
In 1999, a modified version of classical regularization 
techniques. Instead of using regularization in order to 
reduce the measurement noise effect of cancelling the 
inverse filter singularities, and to restore the original signal, 
a prefiltering was performed before the regularization. This 

prefiltering was obtained by using a Wiener filter based on 
a particular modelization of the signal to be restored [5]. 
A recent fast minimization algorithm for the scalar ROF 
model was proposed by Darbon and Sigelle (DS) in [6] 
based on graph cuts. Although C’s algorithm is not as fast 
as the model of DS to solve the variational scalar ROF 
model, it is still fast and presents some advantages 
compared with CGM and DS. First, C’s model use the 
exact scalar TV norm whereas CGM model regularizes it to 
minimize it. Then, the numerical scheme of [4] is 
straightforward to implement unlike the CGM and DS 
algorithms. Besides, the TV norm of DS is anisotropic 
whereas the TV norm of C is isotropic. Finally, we will see 
that the C’s model extends nicely to color/vector images 
whereas the question of extension is open for the CGM 
model and the generalization of DS model to color images 
is not as efficient as in the scalar case [7]. X. Bresson 
extended  the Chambolle’s model [4] to 
multidimensional/vectorial images. Unlike the proposed 
vectorial scheme does not regularize the VTV to minimize 
it. Finally, the numerical solution converges to the 
continuous minimizing solution in the vectorial BV space. 
This VTV minimization scheme to several standard 
applications such as deblurring, inpainting, decomposition, 
denoising on manifolds [8].  
Paul proposed a simple but flexible method for solving the 
generalized vector-valued TV (VTV) functional with a non 
negativity constraint. One of the main features of this 
recursive algorithm is that it is based on multiplicative 
updates only and can be used to solve the denoising and 
deconvolution problems for vector-valued (color) images 
[9]. In 2009, for image restoration, edge-preserving 
regularization method was used to solve an optimization 
problem whose objective function has a data fidelity term 
and a regularization term, the two terms are balanced by a 
parameter λ. In some aspect, the value of λ determines the 
quality of images. A new model to estimate the parameter 
and propose an algorithm to solve the problem was 
established. The quality of images was improved by 
dividing it into some blocks [10].  
For the first time TV Regularization method was applied to 
fMRI data, and show that TV regularization is well suited 
to the purpose of brain mapping while being a powerful 
tool for brain decoding. Moreover, this article presents the 
first use of TV regularization for classification [11]. In the 
particular techniques, the SR problem is formulated by 
means of two terms, the data-fidelity term and the 
regularization term. The experimentation is carried out with 
the widely employed L2, L1, Huber and Lorentzian 
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estimators for the data-fidelity term. The Tikhonov and 
Bilateral (B) Total Variation (TV) techniques are employed 
for the regularization term. The extracted conclusion is that 
in case the potential methods present common data-fidelity 
or regularization term, and frames are noiseless, the method 
which employs the most robust regularization or data-
fidelity term should be used [12]. 

 
III. DUAL VECTORIAL ROF FILTER 

Regularity is of central importance in computer vision. 
Many problems, like denoising, deblurring,  
superresolution and inpainting, are ill-posed, and require 
the choice of a good prior in order to arrive at sensible 
solutions. This prior often takes the form of a regularization 
term for an energy functional which is to be minimized. For 
optimization purposes, it is important that the regularizer is 
convex, since only then one can hope to always find a 
global optimum of the energy within reasonable time. 
Furthermore, images in the real-world can be observed to 
generally be piecewise smooth. For these reasons, the total 
variation (TV) of a function has emerged as a very 
successful regularizer for a wide range of applications. It is 
convex, but still discontinuity-preserving, as it assigns the 
same cost to sharp and smooth transitions. While most 
existing work focuses on scalar valued functions, the 
generalization to vector valued (color or multichannel) 
images remains an important challenge.  
For a greyscale image modeled as a differentiable function 

function ݑ: ߗ → ℝ on a domain   the scalar 
total variation TV(u) is defined as the integral over the 
Euclidean norm |.|2 of the gradient, TV(u) =  |∇u|ଶ	

Ω
 

More precisely, the regularization model is based on the 
dual formulation of the vectorial Total Variation (VTV) 
norm and it may be regarded as the vectorial extension of 
the dual approach defined by Chambolle in [73] for gray-
scale/scalar images. The proposed model offers several 
advantages. First, it minimizes the exact VTV norm 
whereas standard approaches use a regularized norm. Then, 
the numerical scheme of minimization is straightforward to 
implement and finally, the number of iterations to reach the 
solution is low, which gives a fast regularization algorithm. 
Finally, and maybe more importantly, the proposed VTV 
minimization scheme can be easily extended to many 
standard applications. We apply this L1 vectorial 
regularization algorithm to the following problems: color 
inverse scale space, color denoising with the chromaticity-
brightness color representation, color image inpainting, 
color wavelet shrinkage, color image decomposition, color 
image deblurring, and color denoising on manifolds. 
Generally speaking, this VTV minimization scheme can be 
used in problems that required vector field (color, other 
feature vector) regularization while preserving 
discontinuities. 
The VTV minimization algorithm is fast, easy to code and 
well-posed. In fact, this vectorial regularization scheme can 
be applied to any problems that require a L1 regularization 
process for vectorial components. 

VTV minimization model is based on the dual 
formulation of the vectorial TV norm. Let us consider a 
vectorial (or M-dimensional or multichannel) function u, 

such as a color image or a vector field, defined on a 
bounded open domain  Ω ⊂ RN as 

 
x →u(x) := (u1(x), ..., uM(x)), u :  → RM, 
 

inf   sup 				ቄ< ,ݑ .ߘ  > 	Lଶ(Ω, ℝ) + ଵଶλ ‖f − u‖ଶΩ; ℝቅ
       (3.1) 						u			|p| ≤ 1 
 
Which is convex in u and concave in p and the set {|p|<=1} 
is bounded and convex. 
 

IV. METHOD OF SIMULATION 
The simulation is carried on colored images in MATLAB. 
To do so different types of noise (Gaussian Noise, Salt & 
Pepper Noise, Salt & Pepper Noise & Poisson Noise) 
varying from 1% to 9% is incorporated into image. Each 
degraded image is denoised by filters. To make a 
comparative study, analysis is done on four parameters 
namely: 
• Mean 

MEAN=
ଵೣ ∙ ∑ 	ିଵ ∑ ,ݔ)ݎ ିଵ(ݕ    (4.1) 

• Mean Square Error (MSE) 

MSE=
ଵೣ ∙ ∑ 	ೣିଵ ∑ 	ିଵ ,ݔ)ݎ] (ݕ − ,ݔ)ݐ  ଶ (4.2)[(ݕ

• Signal to Noise Ratio (SNR) SNR = 10. logଵ ቈ ∑ ∑ [୰(୶,୷)]మ౯షభబ౮షభబ∑ ∑ [୰(୶,୷)ି୲(୶,୷)]మ౯షభబ౮షభబ   (4.3) 

• Peak Signal to Noise Ratio (PSNR) 
 ܴܲܵܰ = 10. logଵ  ௫((௫,௬))మభೣ..∑ ∑ [(௫,௬)ି௧(௫,௬)]మషభబೣషభబ ൩  (4.4) 

 
V. ALGORITHM 

dual_vectorial_ROF(Im,map) 
1. Read Input Image Im. 
2. [Ny,Nx,Nc] = size(Im); 
3. Im = double(Im); 
4. Im = 255* Im/ max(max(Im(:))); 
5. dt = 1/8; 
6. lambda = 1e1*6; 
7. pxU = zeros(size(Im)); 
8. pyU = zeros(size(Im)); 
9. U = zeros(size(Im)); 
10. Denom = zeros(size(Im)); 
11. nb_iters = 500 
12.  repeat for cpt=1:nb_iters 
13. Divp = ( BackwardX(pxU) + 

BackwardY(pyU) ); 
14. Term = Divp -Im/ lambda; 
15. Term1 = ForwardX(Term); 
16. Term2 = ForwardY(Term);   
17. Norm = sqrt(sum(Term1.^2 + 

Term2.^2,3));     
18. Denom(:,:,1)=1+dt*Norm;  
19. Denom(:,:,2)=Denom(:,:,1); 
20. Denom(:,:,3)=Denom(:,:,1); 
21. pxU = (pxU+dt*Term1)./Denom; 
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22. pyU = (pyU+dt*Term2)./Denom; 
23. U = Im - lambda* Divp; 
24. T=uint8(U); 
25. end 

  
BackwardX(v)  

1. [Ny,Nx,Nc] = size(v); 
2. dx = v; 
3. dx(2:Ny-1,2:Nx-1,:)=( v(2:Ny-1,2:Nx-1,:) - 

v(2:Ny-1,1:Nx-2,:) ); 
4. dx(:,Nx,:) = -v(:,Nx-1,:); 
5. return dx; 

  
BackwardY(v,dy); 

1. [Ny,Nx,Nc] = size(v); 
2. dy = v; 
3. dy(2:Ny-1,2:Nx-1,:)=( v(2:Ny-1,2:Nx-1,:) - 

v(1:Ny-2,2:Nx-1,:) ); 
4. dy(Ny,:,:) = -v(Ny-1,:,:); 
5. return dy 

  
ForwardX(v,dx); 

1. [Ny,Nx,Nc] = size(v); 
2. dx = zeros(size(v)); 
3. dx(1:Ny-1,1:Nx-1,:)=( v(1:Ny-1,2:Nx,:) - 

v(1:Ny-1,1:Nx-1,:) ); 
4. return dx 

 
ForwardY(v,dy) 

1. [Ny,Nx,Nc] = size(v); 
2. dy = zeros(size(v)); 
3. dy(1:Ny-1,1:Nx-1,:)=( v(2:Ny,1:Nx-1,:) - v(1:Ny-

1,1:Nx-1,:) ); 
4. Return dy 

 
This algorithm reads an input image Im. It finds in Line 2, 
the size of an image, number of rows in Ny, number of 
columns in Nx, and number of channels in Nc respectively. 
In line 3 , the image is casted into double so when 
normalizing on division it does not get zero. Then, in line 4, 
the pixel intensity range is made from 0 to 255 multiplying 
the image by 255/(largest pixel value in image).  For 
example, if the intensity range of the image is 0 to 180 and 
the desired range is 0 to 255. Then each pixel intensity is 
multiplied by 255/180, making the range 0 to 255. In line 5, 
the temporal bound (dt) is set to 1/8. It is mathematically 
proved that this value aids in finding the minimized 
solution. The temporal bound does not depend on the 
number of channels. The lambda is set to 1e1*6 in line 6. 
Four new arrays pxU, pyU, U, Denom of the same size as 
of input image consisting of all zeros are created in line 7 to 
10 respectively. To get a steady state solution the process is 
repeated several times. These iterations may vary 
depending upon the noise level. For higher noise levels, 
more number of iterations are needed. This iteration is set 
in line11. For each iteration, the below mentioned 
procedure is applied. It begins by applying the discrete 
divergence operator in line 13.To do so , it applies two sub-
procedures, BackwardX and BackwardY. These sub-
procedures, returns a temporary array which is calculated 

by calculating the consecutive differences of certain 
elements in the input arrays. The results from these sub-
procedures are added to give the divergence operator in line 
13.  Now a new array Term is calculated by modifying the 
divergence operator using the input image array and the 
factor lambda in line 14. Two new arrays Term1 and 
Term2 are created using the subprocedures ForwardXand 
ForwardYin Line 15 and 16 respectively. These sub-
procedures, returns a temporary array which is calculated 
by calculating the consecutive differences of certain 
elements in the input arrays. Now in line 17, Term1 and 
Term2 are normalized. In  image processing,  normalization 
 is a process that changes the range of pixel intensity 
values. In line 18-20, the algorithm introduces coupling 
between the channels. Each channel use information 
coming from other channels to improve the denoising 
model. To convey the information from one channel to 
another the RGB image is split into three separate greyscale 
images representing the red, green and blue color planes. 
The arrays pxU and pyU are then updated in line 21 and 22 
with the new values using the information conveyed by 
each channel mentioned in above lines. The coupling term 
basically helps to better restore parts in the images where 
the intensities are weak. Then in line 23, the Euler-
Lagrange’s technique is used by which the minimized 
solution of the VROF model is found. The image Is casted 
to an uint8 data type. The procedure is repeated number of 
times specified in Line 11 depending upon the noise levels. 
 

VI. FLOWCHART 
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VII. PICTORIAL RESULTS 
DUAL VECTORIAL ROF FILTER 

 Original Image Noisy Image Filtered Image 

Greyscale 
Normal 
Image 

   

Greyscale 
Colored 
Image 

   

Greyscale 
TEM 
Image 

 

Colored 
TEM 
Image 

 
 

VIII. EXPERIMENTAL RESULTS 
Gaussian Noise 

Noise 
Intensity 

Mean MSE SNR PSNR 

0.001 169.5292 8.15E+01 13.3706 29.0184 

0.002 169.7034 8.22E+01 13.3532 28.9795 

0.003 169.758 8.28E+01 13.3396 28.9513 

0.004 169.862 8.41E+01 13.3071 28.8847 

0.005 169.862 9.26E+03 3.5332 8.4657 

0.006 199.5159 8.45E+01 13.2982 28.8616 

0.007 170.0708 8.47E+01 13.2945 28.8533 

0.008 170.1431 8.58E+01 13.267 28.7952 

0.009 170.3542 8.70E+01 13.239 28.7372 

 
Speckle Noise 

Noise 
Intensity 

Mean MSE SNR PSNR 

0.001 167.7624 4.19E+01 14.8123 31.9085 

0.002 167.7638 4.23E+01 14.7899 31.8637 

0.003 167.7537 4.29E+01 14.7621 31.8087 

0.004 167.7281 4.34E+01 14.7335 31.7523 

0.005 167.7441 4.36E+01 14.7256 31.7361 

0.006 167.7083 4.42E+01 14.6937 31.6737 

0.007 167.73 4.47E+01 14.6699 31.6252 

0.008 167.734 4.50E+01 14.659 31.6033 

0.009 167.7332 4.53E+01 14.6443 31.5738 
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Salt & Pepper Noise 

Noise 
Intensity 

Mean MSE SNR PSNR 

0.001 167.8161 4.29E+01 14.7635 31.8104 

0.002 167.8601 4.48E+01 14.666 31.6152 

0.003 167.9063 4.71E+01 14.5586 31.4004 

0.004 167.9316 4.88E+01 14.4836 31.2504 

0.005 168.0065 5.19E+01 14.3495 30.9817 

0.006 168.0221 5.31E+01 14.299 30.8808 

0.007 168.0618 5.42E+01 14.2556 30.7937 

0.008 168.1104 5.79E+01 14.111 30.5047 

0.009 168.1394 6.03E+01 14.0231 30.3292 
 

Poisson 
Noise 

Mean MSE SNR PSNR 

Dual 
Vectorial 

ROF 
Filter 

167.7725 44.4024 14.6864 31.6567 

 
 

VIII. CONCLUSION 
It is clearly visible that DVROFT filter is quite effective for 
denoising the images both in case of greyscale TEM and 
colored TEM image with the exception of gaussian noise  It 
is observed that the SNR and PSNR ratios obtained for 
TEM image is much higher than those obtained for normal 
image. Also, though DVROFT retains the structure in the 
image but do not capture very fine details due to 
smoothing. 
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